This paper presents a study of mesosphere and low thermosphere influence on ionospheric disturbances during 2009 major sudden stratospheric warming (SSW) event. This period was characterized by extremely low solar and geomagnetic activity. The study was performed using two first principal models: thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) and global self-consistent model of thermosphere, ionosphere, and protonosphere (GSM TIP). The stratospheric anomalies during SSW event were modeled by specifying the temperature and density perturbations at the lower boundary of the TIME-GCM (30 km altitude) according to data from European Centre for Medium-Range Weather Forecasts. Then TIME-GCM output at 80 km was used as lower boundary conditions for driving GSM TIP model runs. We compare models' results with ground-based ionospheric data at low latitudes obtained by GPS receivers in the American longitudinal sector. GSM TIP simulation predicts the occurrence of the quasi-wave vertical structure in neutral temperature disturbances at 80-200 km altitude, and the positive and negative disturbances in total electron content at low latitude during the 2009 SSW event. According to our model results the formation mechanisms of the low-latitude ionospheric response are the disturbances in the n(O)/n(N2) ratio and thermospheric wind. The change in zonal electric field is key mechanism driving the ionospheric response at low latitudes, but our model results do not completely reproduce the variability in zonal electric fields (vertical plasma drift) at low latitudes.
The Ames Power Monitoring System (APMS) is a centralized system of power meters, computer hardware, and specialpurpose software that collects and stores electrical power data by various facilities at Ames Research Center (ARC). This system is needed because of the large and varying nature of the overall ARC power demand, which has been observed to range from 20 to 200 MW. Large portions of peak demand can be attributed to only three wind tunnels (60, 180, and 100 MW, respectively). The APMS helps ARC avoid or minimize costly demand charges by enabling wind-tunnel operators, test engineers, and the power manager to monitor total demand for center in real time. These persons receive the information they need to manage and schedule energy-intensive research in advance and to adjust loads in real time to ensure that the overall maximum allowable demand is not exceeded. The APMS (see figure) includes a server computer running the Windows NT operating system and can, in principle, include an unlimited number of power meters and client computers. As configured at the time of reporting the information for this article, the APMS includes more than 40 power meters monitoring all the major research facilities, plus 15 Windows-based client personal computers that display real-time and historical data to users via graphical user interfaces (GUIs). The power meters and client computers communicate with the server using Transmission Control Protocol/Internet Protocol (TCP/IP) on Ethernet networks, variously, through dedicated fiber-optic cables or through the pre-existing ARC local-area network (ARCLAN). The APMS has enabled ARC to achieve significant savings ($1.2 million in 2001) in the cost of power and electric energy by helping personnel to maintain total demand below monthly allowable levels, to manage the overall power factor to avoid low power factor penalties, and to use historical system data to identify opportunities for additional energy savings. The APMS also
solar wind engineer toolset v9 keygen photoshop
2ff7e9595c
Kommentare